

Stainless Steels

25%Cr SUPERDUPLEX WITH 2%Cu

DATA SHEET B-63

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL

Tel: +44(0)1932 566721
Fax: +44(0)1932 565168 Sales
Fax: +44(0)1932 569449 Technical
Fax: +44(0)1932 566199 Export
Email: info@metrode.com
Internet: http://www.metrode.com

Alloy type

Superduplex ferritic-austenitic alloy with nominally 25%Cr-8%Ni-3.5%Mo-1.5%Cu-0.2%N.

Materials to be welded

cast

ASTM A240 UNS S32550 (wrought).

A351 & A744 grade CD4MCu. A890 grade 1A/UNS J93370. A890 grade 1B/UNS J93372.

DIN 1.4515 (G-X3CrNiMoCuN 26 6 3).

1.4517 (G-X3CrNiMoCuN 26 6 3 3).

BS 3100 grade 332C13.

3146 grade ANC21.

Proprietary Ferralium 255 and SD40 (Meighs).

Uranus 50M, 55, 52N, 52N+ (CLI). Ferrinox 255 (Advanced Metals).

Applications

These consumables are designed to match similar alloys, usually supplied as castings. The addition of copper improves corrosion resistance in sulphuric acid media and potentially increases strength and wear resistance, but as-welded toughness and pitting performance in chloride media are reduced in comparison to alloys with <1%Cu. Although the composition is controlled to ensure a minimum Pitting Resistance Equivalent (PRE) of 40 to match the superduplex alloys and maximise resistance to pitting consumables with <1%Cu may be preferred for non-sulphuric acid media unless PWHT is applied (see later).

Applications include **pumps** and **valves**, **corrosion/wear resisting parts**, and **process equipment** for use in **offshore oil** and **gas industries**, **pulp**, **paper** and **textile industries**, and **chemical** and **petrochemical plant**.

Microstructure

In the as-welded, or solution annealed condition, the microstructure is duplex with about 25-60% ferrite.

Welding guidelines

For general fabrication welds no preheat is generally required and interpass is kept below 150°C. For castings and other highly restrained welds a preheat-interpass range of 100-225°C is helpful in avoiding any risk of hydrogen cracking.

PWHT

The consumables are designed to be predominantly used in the solution annealed condition. Castings will invariably require solution annealing and both electrode and flux cored wire provide higher toughness and somewhat lower strength after solution annealing. The G48A performance is also better following solution annealing. Typical PWHT is carried out at 1120°C for about 2-3 hours and then water quenched.

Related alloy groups

Solid filler wire to match these alloys (AWS ER2553) has only 6%Ni, so welds usually have excess ferrite. The best alternative is Zeron[®] 100X with 0.7%Cu (DS B-61). Copper-free 2507 electrodes are also available (DS B-62).

Products available

Process	Product	Specification
MMA	Supermet 2506Cu	AWS E2553-16
FCW	Supercore 2507Cu	-

Rev 05 04/10 DS: B-63 (pg 1 of 3)

Product description	MMA electrode made on a low carbon stainless steel core wire with a rutile flux containing additional elements falloying and deoxidation. Nitrogen and nickel are controlled to give a balanced duplex structure to minimise the risk of cracking, particularly in highly restrained welds.																
	Recovery is about 140% with respect to core wire, 65% with respect to whole electrode.																
Specifications	AWS A5.4 BS EN 1600 BS 2926		E2553-16 E 25 9 3 Cu N L R 52 (Nearest 25.6.2.Cu.R)														
ASME IX Qualification	QW432 F-No 5, QW442 A-No 8																
Composition	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	PRE *						
(weld metal wt %)	min	0.5				24.0	7.5	2.9	1.5	0.18	40						
	max 0.04	1.5	1.0	0.025	0.030	27.0	8.5	3.9	2.5	0.25							
	typ 0.03 * PRE (Pittin	1 g Resista	0.4 ince Equ	0.01 ivalent)	0.02 $= %Cr +$	25.5 3.3%Mo	8 0 + 16%N	3.5	1.7	0.22	41						
All-weld mechanical	Typical as-welded	and PW	HT		1	1120°C/2h + WQ			As-we	lded							
properties					m	in *	typical		min	typical							
	Tensile strength			MP		90	775		760	925							
	0.2% Proof stress			MP		85	575	550		780							
	Elongation on 4d					16	32	15		17							
	Elongation on 5d Reduction of area				% %			15		16 25							
	Impact energy	l	+ 20°C	,	J	 	40 70			35							
			- 30°C		J		60			22							
	Hardness			Н		260				340							
	* These properties are appropriate for ASTM CD4MCu castings solution treated for optimum corrosion resistance; rapid cooling is important for best impact properties.																
Operating parameters	DC +ve or AC (OCV: 70V min)																
									\Diamond								
	ø mm		2.5		3.2				5.0								
	min A		60		75				130								
	max A		90		120	20 155			210								
Packaging data	ø mm		2.5		3.2		4.0	5.0									
	length mm		300		350		350		450								
	kg/carton		2.0		15.0				16.5								
	pieces/carton		513		321				111								
	3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactor																
Storage		1 .	for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause som														
Storage	for longer than a			rick of a	Orogita	moisture pick-up and increase the risk of porosity. For electrodes that have been exposed:											
Storage	for longer than a moisture pick-up	and incre	ease the		orosity.												
Storage	for longer than a moisture pick-up	and increat have be	ease the reen expo	sed:		ndition.	Maximum	300° C	C, 3 cycles	s, 10h tota	ıl.						
Storage	for longer than a moisture pick-up For electrodes the Redry 200 – 250 Storage of redrie	and increat have be °C/1-2h d electro	ease the reen exported to restore des at 50	sed: e to as-p 0 – 200°	acked co	ling oven	or heated	quiver	: no limit	, but maxi	mum 6 wee						
	for longer than a moisture pick-up For electrodes that Redry 200 – 250 Storage of redrie recommended. R	and increate have been commentated and increase and incre	ease the reen exported restored at 50 nded amb	sed: e to as-p 0 – 200°	acked co	ling oven	or heated	quiver	: no limit	, but maxi	mum 6 wee						
Storage Fume data	for longer than a moisture pick-up For electrodes the Redry 200 – 250 Storage of redrie	and increat have be °C/1-2h delectro ecomments	ease the reen export to restore des at 50 anded amb	sed: e to as-p 0 – 200°	acked co	ling oven	or heated	quiver	: no limit	, but maxi lid): < 609	mum 6 wee						

Rev 05 04/10 DS: B-63 (pg 2 of 3)

SUPERCORE	250	7Cu		Rutile	flux c	ored w	ire for	Cu cc	ntaini	ng sup	perdup	olex stainles	s steel
Product description												The Supercore wnhand and HV	
	Metal	Metal recovery is about 90% with respect to wire.											
Specifications	There are no national specifications for this wire, the nearest relevant specification is AWS A5.22 E2553T0-4.											553T0-4.	
ASME IX Qualification	QW432 F-No, QW442 A-No												
Composition		С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	PRE _N	
(weld metal wt %)	min						24.0	8.5	3.2	1.0	0.2	40	
	max	0.04	1.5	1.0	0.02	0.03	26.0	10.5	4.2	2.0	0.3		
	typ	0.03	0.8	0.5	0.005	0.02	24.5	9.3	3.7	1.4	0.25	41	
	Pitting	Pitting resistance equivalent $PRE_N = Cr + 3.3Mo + 16N$											
All-weld mechanical	Typical as welded and PWHT						1120°C/2h + WQ			ı	ed		
properties								ypical		min		typical	
	Tensile strength MPa						760			750		780	
	0.2% Proof stress MPa						450			550		590	
	Elongation on 4d %						40					35	
	Elongation on 5d % Reduction of area %						39			20		33 32	
		t energy	rea	.20	+20°C			65				32 40	
	IIIIpac	renergy			-50°C J			45					
	Hardn	ess		-30	HV			250				>27 300	
Operating parameters	Shielding gas: 80% Ar-20%CO ₂ at 20-251/min. Proprietary gases may be used but argon should not exceed 85%. Current: DC+ve ranges as below for Ar-20%CO ₂ :											eed 85%.	
	ø mm amp-volt range						typi						
	1.2 $140 - 280A, 22 - 3$												
	1.2P 120 – 250A, 20 – 32						2V 180A, 26V				15 – 20mm		
Packaging data	The as Resist possib	Spools vacuum-sealed in barrier foil with cardboard carton: 15kg The as-packed shelf life is virtually indefinite. Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers. Where possible, preferred storage conditions are 60% RH max, 18°C min.											event any
Fume data	Fume	Fume composition (wt %)											
		_	Fe	Mn	1	Ni	Cr ³	Cr ⁶	Cu	F	- (DES (mg/m³)	
			14	10	1	.5	5	5	1	5	5	1.0	

Rev 05 04/10 DS: B-63 (pg 3 of 3)