

High Temperature Alloys

ALLOY 22H HEAT RESISTANT AUSTENITIC STAINLESS STEEL

Alloy type

0.5%C-28%Cr-50%Ni-5%W cast high temperature alloy.

Materials to be welded

DIN: 2.4879 G-NiCr28W G-X45NiCrWSi 48 28

Proprietary cast alloys:

22H (Duraloy) Super 22H (Duraloy; +2%Co) Paralloy H48T (Doncasters Paralloy) Centralloy 4879 (Schmidt & Clemens – Centracero) Marker G4879 (Schmidt & Clemens) Pyrotherm G 28/48/5W (Pose-Marre) HR23 (Cronite) Lloyds T75 (LBA) Thermax 70 (Sheepbridge) Manaurite 50W (Manoir Industries) Thermalloy T75 (Manoir Electroalloys)

Applications

This electrode is designed to match similar high carbon cast alloys originating from Blaw-Knox (Now Duraloy) alloy 22H.

The high carbon 28%Cr-50%Ni-5%W matrix provides excellent hot strength and oxidation resistance at typical service temperatures of 950-1250°C. High nickel gives the alloy good resistance DATA SHEET C-80

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL Tel: +44(0)1932 566721 Fax: +44(0)1932 565168 Sales Fax: +44(0)1932 566199 Technical Fax: +44(0)1932 566199 Export Email: info@metrode.com Internet: http://www.metrode.com

to carburisation and under oxidising conditions high chromium provides useful resistance to sulphidation.

Applications include highly stressed **furnace parts**, **sintering** and **calcining muffles**, **cement kiln components resistant** to **hot abrasion**, **radiant tubes** and **pyrolysis coils**.

Microstructure

The as-welded microstructure consists of high alloy austenite with primary eutectic and secondary carbides.

Welding guidelines

Preheat is often recommended owing to the low ductility of this alloy, coupled with high strength and residual stress levels of multipass welds. For thicker sections, preheat of 300°C or more may be advisable.

Related alloy groups

In an alternative alloy for similar applications about 15%Ni is replaced with cobalt, see data sheet C-70.

Products available

Process	Product	Specification
MMA	Thermet 22H	

Product description	All-positional basic MMA electrode designed to match similar cast alloys. Basic flux system with alloy additions on high purity NiCr core wire. Recovery is about 140% with respect to core wire, 65% with respect to whole electrode.											
Specifications	There ar	re no na	tional sp	pecificati	ions for th	nis electr	ode.					
ASME IX Qualification	QW432 F-No											
Composition	min	C	Mn	Si	S	Р	Cr	Ni	W	Fe		
(weid metal wt %)	max	0.40 0.60	0.5 1.5	0.5 1.2	0.020	0.030	30.0	47.0 54.0	4.0 6.0	 bal		
	typ	0.50	1	0.7	0.006	0.010	28	51	5	14		
All-weld mechanical	As welde	ed					min *	typical	**			
properties		strength			M	Pa	440	780				
	0.2% Pit	ion on 4	4		IVI	1Pa		590 7				
	Elongati	ion on 50	4			70 0/2		6				
	Reductio	on of are	a			%		6				
	Hardnes	SS			H	IV		270				
	*	Minimu	m value	s for DI	N 2.4879	castings	•					
	* *	Minimu The hig	m value h streng	th of the	N 2.4879 weld me	castings	rived from	n the chil	l-cast n	nicrostructu	re coupled	with carbid
	* **	Minimu The hig precipita significa	m value h streng ation an ance for	es for DII th of the d strain- weld me	N 2.4879 weld me hardening etal design	castings stal is der g by suc ned for e	rived from cessive w levated to	n the chil veld beads emperatur	l-cast n s. Roo e servic	nicrostructur m temperatu ce.	re coupled are elongat	with carbid
Operating parameters	* ** ** DC +ve	Minimu The hig precipit significa	m value h streng ation an ance for	es for DII th of the d strain- weld me	N 2.4879 weld me hardening etal design	castings stal is des g by suc ned for e	rived from cessive w levated to	n the chil veld beads emperatur	l-cast n s. Roo e servic	nicrostructur m temperatu ce.	re coupled ure elongat	with carbid tion has litt
Operating parameters	* ** DC +ve	Minimu The hig precipita significa	m value h streng ation an ance for	es for DII th of the d strain- weld me 2.5	N 2.4879 weld me hardening etal design	castings etal is dea g by suc ned for e	rived fron cessive w levated to	n the chil veld beads emperatur 4.0	l-cast n s. Roo e servic	nicrostructur m temperatu ce.	re coupled ure elongat	with carbid tion has litt
Operating parameters	* * DC +ve ø mm min A	Minimu The hig precipit significa	m value h streng ation an ance for	es for DII th of the d strain- weld me 2.5 70	N 2.4879 weld me hardening etal design	castings etal is der g by suc ned for e 3.2 85	rived fron cessive v levated to	m the chil yeld beads emperatur 4.0 110	l-cast n s. Roo e servic	nicrostructur m temperatu ce. 5.0 140	re coupled ure elongat	with carbic tion has litt
Operating parameters	* *** DC +ve ø mm min A max A	Minimu The hig precipit significa	m value h streng ation an ance for	es for DII th of the d strain- weld me 2.5 70 95	N 2.4879 weld me hardening etal design	castings stal is dea g by suc ned for e 3.2 85 120	rived fron cessive w levated to	n the chil yeld beads emperatur 4.0 110 160	l-cast n s. Roo e servic	nicrostructur m temperatur ce. 5.0 140 200	re coupled ure elongat	with carbic tion has litt
Operating parameters Packaging data	* * DC +ve ø mm min A max A ø mm	Minimu The hig precipit: significa	m value h streng ation an ance for	s for DII th of the d strain- weld me 2.5 70 95 2.5	N 2.4879 weld me hardening etal design	castings ital is det g by suc- ned for e 3.2 85 120 3.2	rived fron cessive w levated to	n the chil yeld beads emperatur 4.0 110 160 4.0	l-cast n s. Roo e servic	nicrostructur m temperatu ce. 5.0 140 200 5.0	re coupled ure elongat	with carbic tion has litt
Operating parameters Packaging data	* *** DC +ve ø mm min A max A ø mm length m	Minimu The hig precipit significa	m value h streng ation an ance for	2.5 70 95 2.5 2.5 260	N 2.4879 weld me hardeninş etal design	castings tal is der g by suc- ned for e 3.2 85 120 3.2 310	rived fron cessive w levated to	n the chil yeld beads emperatur 4.0 110 160 4.0 310	l-cast n s. Roos e servic	nicrostructur m temperature. 5.0 140 200 5.0 310	re coupled ure elongat	with carbic tion has litt
Operating parameters Packaging data	* * DC +ve ø mm min A max A ø mm length m kg/cartor	Minimu The hig precipit significa	m value h streng ation an ance for	2.5 70 95 2.5 260 10.5	N 2.4879 weld me hardeninş etal design	castings tal is der g by suc- ned for e 3.2 85 120 3.2 310 12.0	rived fron cessive v levated to	4.0 4.0 110 160 4.0 310 12.3	l-cast n s. Roo e servic	nicrostructur m temperature. 5.0 140 200 5.0 310 12.0	re coupled ure elongat	with carbic tion has litt
Operating parameters Packaging data	* ** DC +ve ø mm min A max A ø mm length m kg/cartou pieces/c	Minimu The hig precipit: significa significa nm n sarton	m value h streng ation an ance for	2.5 70 95 2.5 260 10.5 492	N 2.4879 weld me hardening etal design	castings ital is det g by suched for e 3.2 85 120 3.2 310 12.0 300	rived fron cessive w levated to	4.0 4.0 110 160 4.0 310 12.3 198	l-cast n s. Roo e servio	nicrostructur m temperatur se. 5.0 140 200 5.0 310 12.0 120	re coupled ure elongat	with carbic tion has litt
Operating parameters Packaging data Storage	* ** DC +ve ø mm min A max A ø mm length m kg/cartou pieces/c 3 herm satisfact cause so For elec Redry 1 Storage recomm 18°C.	Minimu The hig precipit: significa significa nm n carton etically tory for ome moi trodes ti 150 – 25 e of redr. nended.	m value h streng ation an ance for sealed longer t sture pic hat have 0°C/1-2 ied elect Recom	s for DII th of the d strain- weld me 2.5 70 95 2.5 260 10.5 492 ring-pu han a we ck-up an been ex th to rest trodes at mended	N 2.4879 weld me hardening etal design all metal orking sh d increase posed: fore to as- 50 – 200 ambient for the second second for the second for the second second for the second for the second for the second for the second for the second for the second for th	astings tal is det g by suc- ned for e 3.2 85 120 3.2 310 12.0 300 tins per ift of 8h e the risk packed o °C in ho storage o	r carton, . Excess condition	4.0 4.0 110 160 4.0 310 12.3 198 with unl ive exposi ity. . Maximu en or heatu s for oper	imited ure of ed quiv ned tins	nicrostructur m temperatures. 5.0 140 200 5.0 310 12.0 120 shelf life. electrodes to er: no limit, s (using pla	Direct uss but maxin s, 10h total but maxin stic lid): <	with carbic tion has litt e from tin anditions wi num 6 week c 60% RH,
Operating parameters Packaging data Storage Fume data	* ** DC +ve ø mm min A max A ø mm length m kg/cartor pieces/c 3 herm satisfact cause so For elec Redry I Storage recomm 18°C. Fume cc	Minimu The hig precipit: significa significa nm n carton etically tory for me moi ctrodes ti 150 – 25 e of redr. eended.	m value h streng ation an ance for sealed longer t sture pic hat have i0°C/1-2 ied elect Recom	s for DII th of the d strain- weld me 2.5 70 95 2.5 260 10.5 492 ring-pu han a we ck-up an e been ex th to rest trodes at mended	N 2.4879 weld me hardening etal design all metal orking sh d increase posed: ore to as- 50 – 200 ambient =	astings tal is dei g by suc- ned for e 3.2 85 120 3.2 310 12.0 300 tins pei ift of 8h e the risk packed c °C in ho storage o	r carton, . Excess condition	4.0 4.0 110 160 4.0 310 12.3 198 with unl ive expossity. . Maximu en or heatos s for oper	imited ure of ed uru 350'	nicrostructur m temperatures. 5.0 140 200 5.0 310 12.0 120 shelf life. electrodes to er: no limit, s (using pla	Direct use humid cct s, 10h total but maxin stic lid): <	with carbic tion has litt e from tin anditions wi num 6 week c 60% RH,
Operating parameters Packaging data Storage Fume data	* ** DC +ve ø mm min A max A ø mm length m kg/cartou pieces/c 3 herm satisfact cause so For elec Redry I Storage recomm 18°C. Fume co	Minimu The hig precipit: significa significa nm n carton etically tory for me moi ctrodes ti 150 – 25 e of redr. nended.	m value h streng ation an ance for sealed longer t sture pid hat have 0°C/1-2 ied elect Recom	s for DII th of the d strain- weld me 2.5 70 95 2.5 260 10.5 492 ring-pu han a we ck-up an been ex th to rest trodes at mended % typical Mn	N 2.4879 weld me hardening etal design all metal orking sh d increased: posed: core to as- 50 – 200 ambient si l: Ni	castings tal is dei g by suc- ned for e 3.2 85 120 3.2 310 12.0 300 tins per ift of 8h e the risk packed c °C in ho storage o	r carton, Excess condition	4.0 4.0 110 160 4.0 310 12.3 198 with unl ive expositivy. . Maximu en or heat s for oper	imited um 350° e grive imited um 350° ed quiv	nicrostructur m temperatures. 5.0 140 200 5.0 310 12.0 120 shelf life. electrodes to er: no limit, s (using pla	Direct use but maxin stic lid): <	with carbic tion has litt e from tin anditions wi num 6 week c 60% RH,