

ALLOY 625 CONSUMABLES

DATA SHEET D-20

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL

Tel: +44(0)1932 566721
Fax: +44(0)1932 565168 Sales
Fax: +44(0)1932 569449 Technical
Fax: +44(0)1932 566199 Export
Email: info@metrode.com
Internet: http://www.metrode.com

Alloy type

Consumables matching the nickel base 625 alloy with typical composition of Ni-21%Cr-9%Mo-3.5%Nb.

Materials to be welded

Matching Alloy 625

 ASTM-ASME
 DIN
 BS

 UNS N06625
 2.4856
 NA21

 A494 CW-6MC (cast)

Proprietary Alloys

Inconel 625 (Inco) Nicrofer 6020hMo (VDM) Nicrofer 6022hMo (VDM)

Other Alloys

High Nickel Alloys: Superaustenitic alloys:

Inconel 601 (Inco) UNS S31254 Incoloy 800H (Inco) 254SMO (Avesta)

Incoloy 825 (Inco) 904L

And equivalents Similar alloys

Cryogenic: Dissimilar:

9%Ni steels Combinations of above

Applications

These consumables are designed to match the composition and properties of alloy 625. Originally developed to give high temperature strength and structural stability, alloy 625 is also widely used for its resistance to general corrosion, pitting, crevice and stress corrosion cracking in severe chloride media. These properties are conferred by high levels of chromium, molybdenum and niobium, which also raise strength to the highest amongst standard nickel-base alloys. Useful properties from -269°C to above 1000°C are achieved.

In addition to matching alloy 625, suitable for welding **heat resisting** alloys including Inconel 601 (except severe sulphidising conditions), Incoloy 800/800H (preferred to

Nimrod AKS above about 900°C), or combinations of these with other alloys for **furnace equipment**, **petrochemical** and **power generation** plants. Some other applications include:

Overmatching corrosion-resistant welds in alloy 825, Hastelloys G and G3, alloy 28, 904L, 6%Mo superaustenitic stainless 254SMo, and also **overlays** on **pumps**, **valves** and **shafts**, often in **offshore** and **marine** environments where high pitting resistance (PRE = 50) and tolerance to weld metal dilution are essential.

Welds in **high strength** ferrous alloys including **cryogenic** 9% nickel steels and for reclamation of dies where rapid **work-hardening** and **toughness** are required.

Microstructure

In the as-welded condition this nickel base weld metal consists of solid-solution strengthened austenite with carbides.

Welding guidelines

No preheat required and maximum interpass of 250°C. When welding superaustenitic alloys the interpass temperature should be controlled to a maximum of 100°C.

Related alloy groups

For welding superaustenitic stainless steels C276 (D-30), alloy 59 (D-31) and alloy C22 (D-32) are also suitable.

Products available

Process	Product	Specification
MMA	Nimrod 625	AWS ENiCrMo-3
	Nimrod 625KS	AWS ENiCrMo-3
TIG/MIG	62-50	AWS ERNiCrMo-3
SAW	62-50	AWS ERNiCrMo-3
	NiCr	BS EN SA FB2

Rev 07 05/09 DS: D-20 (pg 1 of 4)

	Gene	eral D	ata fo	or all	MMA	Elec	trode	s			
Storage	for longer the moisture pictor of selectrod reduced re	nan a worl k-up and es that hav - 250°C/1 redried ele	king shift of increase the ve been exposed to restort to controller at the controlle	of 8h. Excernish for the property of the prope	cessive exporosity. acked cond C in holdin	oosure of edition. Mang oven or	ximum 350 heated qui	o humid c 0° C, 3 cyc ver: no lir	et use from tin is satisfacte onditions will cause so cles, 10h total. nit, but maximum 6 wee tic lid): < 60% RH, > 18	eeks	
Fume data	Fume data Fume composition, wt % typical:										
		Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m³)		
		1	4	9	6	1	0.1	20	0.8		

NIMROD 625								Dov	wnhanc	I MMA	elect	rode for su	ırfacing		
Product description	MMA electrode designed to combine easy operation with the deposition of high quality weld metal and a finish bead of good appearance. The electrode has a basic-rutile flux system and is made on a nickel core wire. Nimre 625 operates on AC or DC+ and is designed primarily for the downhand/flat or H-V positions. Optimised f surfacing and overlays, for joining Nimrod 625KS is preferred. Recovery is about 170% with respect to core wire, 65% with respect to whole electrode.														
Specifications	BS EI	AWS A5.11 ENiCrMo-3 BS EN 14172 E Ni6625 DIN 1736 (EL-NiCr 20 Mo 9 Nb (2.4621))													
ASME IX Qualification	QW432 F-No 43														
Composition (weld metal wt %)	min max typ	0.10 0.04	Mn 0.5 1.0 0.8	Si 0.75 0.7	S 0.015 0.005	P 0.020 0.008	Cr 20.0 23.0 21.5	Ni 55 64	Nb 3.15 4.15 3.4	Fe 2.5 < 1.5	Mo 8.0 10.0	Cu 0.50 0.05			
All-weld mechanical properties	0.2% F Elonga Elonga Reduc Impact Hardne Hardne	e strengt Proof streation on a ation on a tion of a t energy ess (as v ess (wor	ess 4d 5d rea velded) k-harde	ened) > 827N				ASTN				neets PS > 414 quires TS > 4			
Operating parameters	DC +v ø mm min A max A		C (OC'	V: 70V) 3.2 90 155		4.0 13(21()		5.0 160 260						
Packaging data	ø mm length kg/cart pieces			3.2 350 13.8 243	3	4.0 350 13.: 156	50 3.5		5.0 450 16.8 93						

Rev 07 05/09 DS: D-20 (pg 2 of 4)

NIMROD 625k	(S					Basic coated MMA pipe-welding electrode for 625										
Product description	operati appear ASME	MMA electrode with a basic flux system made on a 625 core wire. The electrode is designed to combine easy operation with the deposition of high quality, radiographically sound weld metal and a finished bead of good appearance. Nimrod 625KS is optimised for DC+ welding in all positions including pipework qualified in the ASME 6G position. Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.														
Specifications	BS EN	AWS A5.11 E NiCrMo-3 BS EN 14172 ENi 6625 DIN 1736 (EL-NiCr 20 Mo 9 Nb (2.4621))														
ASME IX Qualification	QW43	32 F-No	43													
Composition (weld metal wt %)	min max typ	0.10 0.04	Mn 0.5 1.0 0.7	Si 0.75 0.4	S 0.015 0.005	P 0.020 0.005	Cr 20.0 23.0 22	Ni 55 63	Nb 3.15 4.15 3.2	Fe 2.5 < 1.5	Mo 8.0 10.0 9.3	Cu 0.50 0.01				
All-weld mechanical properties	0.2% F Elonga Elonga Reduct Impact Hardne Hardne	e strength Proof stres ation on 40 ation on 50 tion of are energy ess (as we ess (work-	ss d d ea elded) -hardeneet TS >	ed) 827MPa				8 5 2 4 3TM N0		+ 160°C 725 440 33 31 32 Grade 1, but meets PS > 414MPa and 5°C + WQ requires TS > 485MPa.						
Operating parameters	DC +v ø mm min A max A	9 mm 2.5 nin A 60			3.2 70 110		4.0 100 155		5.0 130 210							
Packaging data	ø mm length kg/cart pieces	on	2.5 nm 260 on 11.1			3.2 300 13.5 375	4.0 350 15.0 300			5.0 350 15.0 189						

Rev 07 05/09 DS: D-20 (pg 3 of 4)

62-50										Solid	wire fo	or TIG	, MIG	and S	SAW
Product description	Solid v	wire for T	IG, MI	G and S	AW.										
Specifications		N ISO 18 01: Pt5 736	274	SNi66 Grade SG-N	ERNiCrMo-3 SNi6625 Grade NA43 SG-NiCr 21 Mo 9 Nb (2.4831) DNV and LRS (TIG)										
ASME IX Qualification	QW43	32 F-No	43												
Composition (wire wt %)	min max typ	C 0.05 0.015			0.0	P Co 20. 0.015 23. 0.004 22		Ni 60.0 bal 65	0.0 8.0 3.15 al 10.0 4.15		Cu 0.50 0.05	AI 0.40 0.2	Ti 0.40 0.2	Fe 1.0 0.2	
All-weld mechanical properties	Tensile 0.2% F Elonga Elonga Impact Impact Hardne		ss d d iid S > 827	- 100' - 196' 7MPa re	MPa MPa MPa % 6 - 100°C J - 196°C J HV MPa required by co grades. Cast CW-6M				STM N06625 Gra						a and
Typical operating parameters	Shieldi Curren Diame Param	t ter		TIG ³ Ar DC- 2.4mi 100A, 1	m 2V		Ar F	MIG or ArHe Pulsed .2mm 29V (mea	an)	NiO I 1.	SAW Cr flux OC+ 6mm A, 26V				
Packaging data	ø mm 0.8 1.0 1.2 1.6 2.0 2.4 3.2			TIG 2.5kg tube 2.5kg tube 2.5kg tube 2.5kg tube			MIG 15kg spool To order 15kg spool		 25kg						
Fume data	MIG f	ume com	position Fe	Mn 1	(TIG & Cr ³		fumo Ni 50	N	ole) lo	Cu < 0.5	OES	(mg/m³)		

Rev 07 05/09 DS: D-20 (pg 4 of 4)